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Abslract. An approximation method for the determination of energy levels in quantum 
theory is discussed which starts from a scaled set of eigenstates of a solvable model. It is 
shown that the lowest approximation fulfils certain relations which also hold exactly. The 
approximation is tested by comparison with numerically computed eigenvalues in several 
cases. The errors turn out to be moderate in most of these and depend very little on 
typical coupling constants. 

1. Introduction 

For many practical applications, numerical methods for the accurate calculation of 
energy eigenvalues in quantum mechanics are widely used. Sometimes one would 
prefer, however, a simple method by means of which one may obtain quick information 
on orders of magnitude, together with analytical expressions, which are simple enough 
to be used as an input for further studies. The method to be described below is of 
this type. The basic idea-the use of a scaled set of eigenstates of some solvable 
Hamiltonian-is not entirely new: it has been used in some special models as a starting 
point for numerical calculations. Here we shall consider this idea in a general context. 
We shall show that a certain choice of the scaling parameter may be preferable. Some 
exact relations are then valid even in the lowest approximation and the scaling 
parameter acts in fact as a (nonlinear) variational parameter. In order to obtain some 
information on the reliability we shall compare the results obtained in this approxima- 
tion with results based on numerical integration of the Schrodinger equation for various 
models. 

2. Description of the method 

The method to be described can be used both for one-dimensional problems and 
problems with central symmetry. In order to deal with both cases we employ the usual 
Schrodinger scaling. We start from the Hamiltonian 

H = ( h 2 / 2 m ~ 2 ) h ,  h = h i n f  V ( q ) ,  (1) 

[q ,  PI = i. (2) 

with some appropriate scaling factor K.  We use dimensionless dynamical variables p ,  q 
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For one-dimensional problems we have 

For problems with central symmetry we have 

( 3 b )  
2i 1(1+1) 1 

q 2  ' r 4 
h =p'--p+- r = Kq, - ( f '  * p )  = hp/K kin 

with the quantum number I of orbital angular momentum. The potential is assumed 
to depend only on q in both cases. In order to formulate the method we consider 
another Hamiltonian 

6 = hk,,, + W ( q )  (4) 

whose normalised eigenstates 1 n )  and eigenvalues w, 

( L  - w,)[n)  = 0, (nln) = 1, 

are assumed to be known. In previous papers (Feranchuk and Komarov 1982, 
Yamazaki 1984) the harmonic oscillator potential has been used as a 'reference 
potential' W in a determination of eigenvalues for the quartic anharmonic oscillator 
in one  dimension. The method is extended here to other reference potentials. It is 
this extension which allows for a discussion of problems with central symmetry (where 
operator techniques a re  inconvenient). For central symmetry the states In) may also 
depend on 1: this dependence is suppressed in the notation used here. 

We consider the unitary operator 

U (  e) = exp( eG) ( 5 )  

(6) 

with a real parameter .9 and 
G = - 'i( 

2 P 4 + 4 P ) .  
It is observed that G generates a scale transformation 

U - ' ( o ) F (  P, 4 )  w e )  = F(e-$, eeq) 

(for a proof cf the appendix). 
Now we consider the states 

la, e ) =  u ( e ) l n )  (7) 
where 0 is allowed to depend on n (and I for central symmetry). It has to be kept in 
mind that the states (7) a re  normalised, but neither orthogonal nor complete for 
non-trivial dependence of 8 on n. The lowest approximation to the eigenvalue E ,  of 
h is defined by 

(8) = 

where Bo is a solution of the equation 
( n j  8olhln, 00)  

(a iae)(n,  e l q n ,  e) = 0. (9) 
If this equation has several solutions, we have to  select an  appropriate one. Reality 
of 8, is clearly a necessary condition. In most applications we have found only one  
real solution. Higher approximations a re  found by perturbation theory with 

h(1) = , h -In, en)Eir'(n, 
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as perturbation term. The calculation has to be done for each level separately with 
individual & ( n )  determined from (9). Here we shall consider, however, only the 
lowest approximation. 

3. Properties of the lowest approximation 

The special choice of 0 as parameter of a scale transformation (in contrast to other 
possible variational parameters) has favourable consequences and provides for simplifi- 
cations which we shall now study. 

By differentiation we obtain from (9) 

(a/ae)(n, Olhln, e ) =  (a /ae) (n lu- ' (e )hLi ( t ) ) ln)=(n ,  el[h, Glln, 8).  

(n ,  Q"l[h, Glln, 60)  = 0 

Thus we can use 

(10) 

instead of (9) as an equation for Bo. Evaluating the commutator using (6) and the 
commutation relations ( 2 )  we obtain 

(n ,  eo1-2h,,"+q aV/aqln, (11) 

For exact eigenstates of h this is the virial theorem. Thus we see that our lowest 
approximation fulfils the virial theorem which allows for reliable estimates of eigen- 
values in many cases. 

Another useful property of the lowest approximation is found if we assume that h 
depends on some parameter A 

h = h(A) .  (12) 

The parameter 8 depends on A in this case and the lowest eigenvalue contains A both 
explicitly via h and implicitly via 8: 

&:')(A) = ( n ,  e(A)lh(A)ln, e(A)). 
Differentiation with respect to A gives 

d&',O'/dA = ( n ,  O(h)ldh/dAln, B(A))+(de/dA)(a/ae)(n, Olhln, e). 
The last term vanishes because of (9) so that we obtain 

de',O'/dA = ( n ,  Bldh/dAln, e). (13) 
For exact eigenstates and eigenvalues this is the Hellmann-Feynman theorem. It 
should be observed, however, that we have used only (9) and not (7) in this derivation: 
therefore ( 1 3 )  would hold for any other parametrisation as well. 

The equations for the determination of Bo and the lowest eigenvalue can be rewritten 
using the formulae given above. Thus we may use 

e2'(a/ae)(nl ~ ( q  ee))in) = eze(nlq e'V'(q e'))ln) 

= 2 ( w, - ( n  I WI n ) )  

E!,'' = (ni V(q eeo)l,)+~eeo(nlqV'(eeoq)ln) 

(14) 
€or the determination of 8,. With a solution of (14) we have 

= ( n /  V ( q  e")/ n) + ( w, - (nl WI n ) )  e-"O. (15) 
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Therefore the lowest approximation amounts lessentially to a computation of the 
diagonal element of V between eigenstates of h. For simple reference potentials this 
computation can be done analytically for a large class of potentials V. 

If W is chosen homogeneous, 

W = AqP, (16) 

w, - ( n  I WI n) = [ P /  (2  + PI1 wfl 

the virial theorem for 6 gives 

(17) 

which provides for a further simplification. The factor A in (16) can be taken as unity 
without loss of generality, since it can be absorbed in 6. 

The close connection with a variational procedure is established by another 
equivalent way to formulate the lowest approximation. Let (q)n) be a normalised 
eigenfunction of the Hamiltonian (4). The function 

(ql lLa(n))  = a@(aq’ln) (18) 

with a constant (positive) factor a and cc. =$  (resp 2) in the one-dimensional (resp 
spherically symmetric) case is then also normalised. In terms of the scaled dynamical 
variables q = aq’, p = p ’ / a  we have hkin( p ’ ,  q ’ )  = a 2 h k j , (  p ,  q )  and obtain 

($m ( n)l h 1 ( U)) = *( n l  h k i n (  p ,  411 n )  + ( n  I v(q/ a )I n ) .  

Taking 
=e-’ 

this agrees with (15). Therefore the lowest approximation can be considered as a 
variational approach with the trial function (1 8) and a as variational parameter. This 
implies that the energy of the exact ground state n = 0 is lower than the result obtained 
in first approximation by the present method. 

Finally we consider problems in which V consists of a homogeneous potential (16) 
plus a perturbation 

V =  W+AV,(q). (19) 

We try a Taylor expansion around A = 0 

&:”(A) = E : ~ ) ( O ) + A E ( ~ ~ ” ( O ) + ~ A ~ E ~ ~ ) ” ( O ) +  . . , . 

In order to compute the first term we have to solve (14) with V = W. Using relation 
(17) we obtain after a few elementary steps 

6(A = O ) = O ,  

.‘,“’(O) = (4 V, (q ) /n ) .  

In, e(o)) = 14, E Ip’ ( 0 )  = w,. 

For the next term we use (13) and obtain 

The third term is found by differentiation of (13). We have 

(d/dA)ln, 6(A))= U’(e)ln)s’(A) = Gln, 6(A))6’. 

For ( n ,  @ ( A I 1  we obtain the opposite sign, since U’(6) = U(-6) .  Therefore 

d2E!,’)(A)/dA2= - 6’(A)(n, 6(A)l[G, V,(q)]ln,  6(A)). (20) 
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Thus 

&',''(A) = w,+A(nlVl(q)ln)+4A2B'(0)(nl[G, V , (q ) ] ln )+  . . . . (21) 

For small A our lowest approximation agrees therefore with the perturbation expansion 
at least up to first order in A, whenever an expansion in powers of A is meaningful. 

4. Application to one-dimensional problems 

For these problems it seems natural to use the harmonic oscillator 

w = 42, P = 2 ,  w, = 2n + 1. 

The eigenstates are 

In) = ( a + ) n I o ) ( l / f i ) ,  a10) = 0, 

with the usual creation and destruction operators 

q = ( 1 / J 2 ) ( a  + a + ) ,  p = ( l / i f i ) ( a  - a + ) ,  [a ,  a + ]  = 1. 

It is worth noting that the scale transformation generated by (6) 

G =l(a"-  a2 )  (23) 

corresponds to a transformation familiar from solid state physics (Bogoliubow, 
Primakoff, Holstein) which gives new ladder operators 

b = U(e)aU- ' (  e) = a cosh 6 - a +  sinh 8 (24) 

so that the states ( 7 )  become 

~ l t ,  e)  = (b+)nlo, e ) ( i / f i ) ,  b10, e)  = 0, [b, b+]= 1. (25) 

The matrix element in (14), (15) can be explicitly evaluated for several potentials. 
An example is 

with 

This result can be obtained using algebraic techniques for ladder operators. Equation 
(14) becomes an algebraic equation of degree (s + 1) for e2'. The anharmonic oscillator 
containing the terms with m = 1 , 2  has been examined before (Yamazaki 1984). The 
cubic equation for e'' has only one admissible root and the method has reproduced 
the exact eigenvalues (known from extensive numerical examination of the Schrodinger 
equation) with small errors ( ~ 2 % )  for arbitrary (positive) coefficients C, ,  C2. Higher 
approximations as indicated in 0 2 reduce the error considerably. 

The extension to higher anharmonic terms is straightforward with the formulae 
given above. As long as all coefficients Cm are non-negative, there is always only one 
admissible root e2'0, since the matrix element (27)  is positive. 
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Here we shall concentrate on the example 

V = f pq2k + A q 2 ' ,  l > k > O ;  A > O ;  P L O .  (29) 

The upper sign corresponds to some anharmonic oscillator, the lower one to a double 
well. For both signs we have only one admissible root. With 

K ( n ,  l )=(n+t) l lS , . , ,  C ( n ,  k )  = kS,,k/(n+t), C ( n ,  1) = 1, (30) 

the equation for a =eze  reads 

Aa'+' = K (  1 T pCak+'). (31) 

The lowest approximation for the eigenvalues is 

&iO)(pU,  h )  = A ( / +  1)S,,/U" * /A (  k l ) S , , k a k  

which is valid also for the exact eigenvalues (see e.g. Simon (1970) for k = 1; the 
extension is trivial). Thus our approximation reproduces also those analyticity proper- 
ties with respect to the coupling constant which are a consequence of relation (33). 

In order to arrive at expansions either for large or for small coupling we have to 
solve (31) iteratively. For large A/small p we obtain 

For the opposite situation small Allarge p the two signs of p must be investigated 
separately. For the oscillator the bracket on the RHS of (31) assumes small values ( a  
approaches a constant). We obtain 

For the double well the bracket does not vanish because of cy > 0. We have to iterate 
for large CY and obtain 

It is evident that the expansion (21) is not allowed for the double well. 
Extensive and accurate numerical results are available for the sextic oscillator and 

double-well (Balsa and PI6 1983) and for the quartic double-well (Balsa et a1 1983). 
We have compared the results of formula (32) with these. For the sextic oscillator 
( k  = 1, 1 = 3, p = +1) the error amounts again to a few percent in a large region of A 
and n. Even for the extreme value A = lo4 (where one would not trust naively any 
approximation based on the harmonic oscillator) the error is only 6.6% for n = 0 and 
4.3% for n = 1. For 2 s  n S 39 the error is smaller than 2.6% for s A zs lo4. This 
is probably due to the scaling properties (1 1) resp (33) of our approximation. For 
the quartic double-well ( k  = 1, 1 = 2, p = -1) and its sextic counterpart ( k  = 1, 1 = 3, 
p = - 1) the relative errors amount to a few percent for A > 1 and n > 0. For the 
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ground state with A = 1 the error is 7% for the quartic and 14% for the sextic well. 
In general, the error becomes smaller with growing n and A.  The approximation 
becomes unreliable for smaller values of A. In particular the negative eigenvalues (i.e. 
those which are situated below the central peak of the well which corresponds to E, = 0 
here) are reproduced with large errors. 

An improvement can be obtained using shifted ladder operators, whereby the shift 
acts as an independent variational parameter, and taking parity into account (see 
Feranchuk and Komarov (1982); their quantity OJ corresponds to our exp(-26)). The 
calculation becomes, however, quite complicated. 

Some information is still contained in our formula even on the negative levels. 
Since very little is known exactly on double-well potentials, this information may give 
some hints, even if it is not very accurate. We can look for which value A = Ao(n)  the 
nth eigenvalue (32) assumes the value zero. Setting the bracket in the last form of 
(32) equal to zero and inserting the corresponding value of (Y into (31) we obtain 

Since the eigenvalues decrease with A ,  we may state that for A < Ao(0) one level ( n  = 0) 
is situated below the central peak (i.e. inside the double well), for A < A,(1 )  two levels 
( n  =0,1)  etc. Since the exact eigenvalue for the ground state is lower than the 
approximative one, Ao(0) is an exact upper bound on the value of the coupling constant 
for which the ground state lies inside the well. The other values Ao(n)  are probably 
only useful for rough estimates. 

5. Application to problems with central symmetry 

For problems with central symmetry one may choose Coulomb eigenstates as a basis 
for the method. In this case we have 

(37) 2 w = - 2 /q ,  p=-1,  wn=-1 /n  . 
The eigenstates are represented by 

Here L denotes the Laguerre polynomials and the integers n, 1 are restricted by 
n 2 1 + 1, 1 = 0, 1 , 2 , .  . . . The crucial matrix element is 

which can again be evaluated explicitly for a class of potentials: results for exponential 
dependence (Yukawa type potential) can be found in e.g. Gradshteyn and Ryzhik 
(1965). For powers of q it is simpler to use recurrence relations of the Laguerre 
polynomials and their orthogonality properties. 

Here we shall consider as a simple example the 'funnel' potential 

V ( q )  = A q -  (1 -A)q- '  (40) 
which is used as a phenomenological potential for quark-anti-quark bound states. In 
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this case we obtain 

n2(n, I1 V ( q  ee) ln,  I )  = A ee - ( 1  - A )  e-' (41) 

with 

A =iAn2[3n2-1(1+1)]. (42) 

Ay3+ ( 1  - A)y - 2 = O .  (43) 

E;:) = [3 - 2y( 1 - A ) ] / (  n ~ ) ~ .  (44) 

We obtain a cubic equation for y =es  

In terms of its (only) real solution the lowest approximation for the eigenvalues is 

For small A this agrees with perturbation theory because of (21). For A = 1 we obtain 
the expansion 

(45) 
21 3 ( 1 - A )  A 3n2-  I (  I +  1) 

E!,?) = 3  (a) M213- -(i) M1'3+ . . . , M =  
n n 

We have compared the results of formula (44) for the lowest six levels 1 + 1 G n G 1 + 6 
with O s  I s 5 in the range 0.1 d A s 0.9 with exact results on the level sequence (Grosse 
and Martin 1980) and with results of numerical calculations. Our formula reproduces 
the sequence 

E I S  < E ~ P  < E ~ S  < < E Z P  < E 3 s  < E ~ F  < E ~ D  < . . . 
The inequality 

3 E l p S  E 1 ~ + 2 & 1 ~  

is fulfilled and the energy difference between the second and first eigenvalue E ~ (  I) e l (  I )  
decreases with growing I ,  always throughout the range in A considered. In comparison 
with numerically calculated eigenvalues (H Grosse, private communication) the relative 
error depends very little on A so that the dependence of individual eigenvalues on the 
coupling is reproduced rather accurately. The magnitude of the relative error depends, 
however, on the quantum numbers. The worst results were obtained for the S-states 
( I  = 0), where we have found errors of 6-9% and in one case ( n  = 1 ,  1 = 0, A = 0.1) 
even 13%. For the other states the error is smaller and decreases with growing 1. The 
first term in (45) (i.e. the asymptotic formula for A = 1) gives, however, wrong results: 
all eigenvalues turn out too large in comparison with the numerical results. The 
inequality given above remains valid, however, and the level sequence is obeyed with 
the exception of = The difference between the second and the first level with 
given 1 increases slightly with I and thus shows a wrong tendency. Thus our approxima- 
tion is not reliable for A very close to 1.  This is to be expected, since we have used 
Coulomb eigenfunctions which are certainly not appropriate for a potential differing 
so radically from l / q  as (40) does for A = 1.  It is remarkable enough that the 
approximation works for A = 0.9. 

6. Conclusion 

In most of the cases studied the approximation discussed here has turned out reasonable 
in the sense that the eigenvalues are reproduced with moderate errors. The most 
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important aspect is in our opinion that the errors are to a considerable extent indepen- 
dent of typical coupling constants so that the approximation is neither of the weak 
nor of the strong coupling type. This property is plausible, since some exact relations 
are fulfilled already in the lowest approximation. This approximation can be used as 
a starting point for further studies, since explicit analytical expressions can be found 
in man9 cases. Some caution on the reliability is still appropriate, however, since we 
have only tested eigenvalues and not eigenfunctions. The problem of higher approxima- 
tions in a systematic treatment has not been considered here. For the one-dimensional 
cases studied in 9 4 such a scheme can be constructed algebraically: this has been done 
in Yamazaki (1984) for the quartic anharmonic oscillator and has improved the 
accuracy considerably; a generalisation is straightforward, but simplicity is of course 
lost. For spherically symmetric problems higher approximations are all but evident. 
Whether the basic idea of our method can be extended successfully to problems with 
continuous spectra and/or more degrees of freedom remains an open problem. 
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Appendix 

Here we indicate a proof of the relation 

u - * ( e ) F (  p ,  q )  U (  e) = F(e-'p, e'q). 

f a p ( e ) :  = u-'(e)pUqpu(e) 
We shall consider the special example 

with arbitrary (real) a, p. With the explicit form ( 5 )  we have 

(d/de)fap(e) =-  U-' (@)[G,  ~"q~lu(e) .  
The commutator can be evaluated using (6) and (2). The result is 

[G,p"qP1=(a - P ) p " q p .  
Thus we obtain the differential equation 

(d/de)fap (0) = ( P  - a ) f a p  (0). 

Together with the initial condition 

f a p ( e = O ) = P " q a  

f a p ( @ )  = (e-$)a(e'q)p. 

we obtain by integration 

The proof is extended immediately to products p a q p p y q 6 .  . . and formal series of such 
products and applies therefore to rather general functions F. 
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